Coating Effects of Copper in Cnt/carbon Fabric Hybrid Composites Using Electrophoretic Deposition

نویسندگان

  • O. Choi
  • S-B. Lee
  • J-H. Byun
  • W. Lee
چکیده

Electrophoretic process was applied to the deposition of carbon nanotubes on the surface of carbon fabrics in order to enhance the properties of CNT/carbon fabric hybrid composites. Carbon fabrics were modified by two methods: Cu deposition by cathodic method and Cu coating by thermal vaporization method. CNTs were modified by PEI and oxidation treatment. The effects of carbon fabric and CNTs modification were examined by comparing the electrical conductivity and the interlaminar shear strength of the composites. SEM images and EDS analysis confirmed that Cu and CNTs deposition on carbon fabrics was relatively dense and uniform. In the case of simultaneous deposition of Cu and CNTs on carbon fabrics, electrical conductivity in the thickness direction increased one order of magnitude, and interlaminar shear strength improved by 10%, compared with unmodified carbon fabric composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of process parameters for electrophoretic deposition in CNTs/carbon fiber hybrid composites

Carbon nanotubes (CNTs) have attracted a great deal of interest in the development of high-performance engineering composites, due to their exceptional physical, mechanical, electronic and thermal properties. Incorporation of CNTs into polymer has shown great improvements in the functional property, however, the enhancement of the mechanical property was insignificant compared with that of micr...

متن کامل

Preparation of Nanohydroxyapatite-Carbon Nanotube Composite Coatings on 316L Stainless Steel Using Electrophoretic Deposition

Nanohydroxyapatite-carbon nanotube composite coatings were deposited via electrophoretic deposition (EPD). AISI 316L stainless steel and ethanol were used as substrate and dispersing medium, respectively. 5%wt carbon nanotube (CNT) was used as reinforcing phase. Uniform and macrocrack-free coatings were obtained both for hydroxyapatite (HA) and HA-5%wt CNT coatings. Scanning electron micros...

متن کامل

Electrophoretic Deposition of Microwave Combustion Synthesized Hydroxyapatite and Its Carbon Nanotube Reinforced Nanocomposite on 316L Stainless Steel

Nanohydroxyapatite-carbon nanotube Nanocomposite (HA-CNT) coatings were deposited via electrophoretic deposition (EPD). Hydroxyapatite was synthesized via microwave combustion method using calcium nitrate and glycing as starting materials. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that pure hydroxyapatite nanoparticles have been synthesized. AISI 316L s...

متن کامل

Kinetic investigation of carbon nanotube deposition by DC electrophoretic technique

In this paper, kinetics of DC electrophoretic deposition EPD of carbon nanotubes CNTs is investigated. Carbon nanotubes suspended in pure ethanol with addition of magnesium nitrate was used as deposition media. The effect of main EPD parameters such as deposition time, applied voltage and the CNT concentration on deposit yield was investigated. The variation of current density vs. time and the ...

متن کامل

Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates

Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009